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Abstract. Herbivory is viewed as a major driver of plant evolution and the most
important energy pathway from plants to higher trophic levels. Therefore, understanding
patterns of herbivory on plants remains a key focus in evolution and ecology. The
evolutionary impacts of leaf herbivory include altering plant fitness, local adaptation, the
evolution of defenses, and the diversification of plants as well as natural enemies. Leaf
herbivory also impacts ecological processes such as plant productivity, community
composition, and ecosystem nutrient cycling. Understanding the impact of herbivory on
these ecological and evolutionary processes requires species-specific, as opposed to
community-level, measures of herbivory. In addition, species-specific data enables the use of
modern comparative methods to account for phylogenetic non-independence. Although
hundreds of studies have measured natural rates of leaf consumption, we are unaware of any
accessible compilation of these data. We created such a data set to provide the raw data
needed to test general hypotheses relating to plant–herbivore interactions and to test the
influence of biotic and abiotic factors on herbivory rates across large spatial scales. A large
repository will make this endeavor more efficient and robust. In total, we compiled 2641
population-level measures for either annual or daily rates of leaf herbivory across 1145 species
of vascular plants collected from 189 studies. All damage measures represent natural
occurrences of herbivory that span numerous angiosperm, gymnosperm, and fern species. To
enable researchers to explore the causes of variation in herbivory and how these might
interact, we added information about the study sites including: geolocation, climate
classification, habitat descriptions (e.g., seashore, grassland, forest, agricultural fields), and
plant trait information concerning growth form and duration (e.g., annual vs. perennial). We
also included extensive details of the methodology used to measure leaf damage, including
seasons and months of sampling, age of leaves, and the method used to estimate percentage
area missing. We anticipate that these data will make it possible to test important hypotheses
in the plant–herbivore literature, including the plant apparency hypothesis, the latitudinal-
herbivory defense hypothesis, the resource availability hypothesis, and the macroevolutionary
escalation of defense hypothesis.
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METADATA 1!

CLASS I. DATA SET DESCRIPTORS 2!

A. Data set title: Percent leaf herbivory across vascular plant species 3!

B. Data set identification code: Leaf_Herbivory.csv 4!

C. Data set description 5!

The data set includes 2641 spatially explicit measurements of population level leaf 6!

herbivory on 1145 species of vascular plants from 189 studies from across the globe. It includes 7!

annual and or daily rates of percent leaf area damage. All damage measures are caused by 8!

naturally occurring herbivores and span across angiosperms, gymnosperms, and fern species. Each 9!

species-specific population level entry includes information about the location of the study site, 10!

detailed climate classification, habitat information (e.g., forest, grassland, seashore), plant duration 11!

(e.g. perennial, annual) and growth form, and extensive details of the methodology used to 12!

measure herbivory, including seasons of sampling, age of leaves, method used to estimate percent 13!

area damage, number of replicate plants, and when available we include estimates of uncertainty. 14!

The spatial and climatic distribution of the data can be seen in Figures 1 and 2 and the distribution 15!

of data according to plant growth form and duration in Figures 3 and 4.   16!

  17!
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Figure 1: World distribution of sampling sites. Colors illustrate the 30 Köppen-Geiger climate 18!

classification as delimited by Peel et al. (2007).   19!

 20!

 21!

Figure 2: Distribution of data entries among the most frequently studied climate regions according 22!

to the Köppen-Geiger climate classification (Peel et al. 2007). Charts represent the proportion of 23!

measurements in each climate region that were based on: (A) annual rates of herbivory, (B) daily 24!

rates of herbivory, (C) measurements made on standing leaves, and (D) marked leaves.   25!
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Figure 3: Distribution of data entries among a simplified classification of plant growth form.  27!

Charts represent the proportion of measurements falling into each plant growth form category that 28!

were based on: (A) annual rates of herbivory, (B) daily rates of herbivory, (C) measurements made 29!

on standing leaves, and (D) marked leaves.   30!

 31!

  32!

1073!

232!

754!

79! 72!
Annual rates of herbivory!

Tree!

Shrub!

Forb!

Graminoid!

Vine!
454!

61!
27!

6!
4!

Daily rates of herbivory!

Tree!

Shrub!

Forb!

Graminoid!

Vine!

826!

154!

653!

79!62!
Standing Leaves!

Tree!

Shrub!

Forb!

Graminoid!

Vine!
615!

125!

107!

6!14!
Marked leaves!

Tree!

Shrub!

Forb!

Graminoid!

Vine!

1073!

232!

754!

79! 72!
Annual rates of herbivory!

Tree!

Shrub!

Forb!

Graminoid!

Vine!
454!

61!
27!

6!
4!

Daily rates of herbivory!

Tree!

Shrub!

Forb!

Graminoid!

Vine!

826!

154!

653!

79!62!
Standing Leaves!

Tree!

Shrub!

Forb!

Graminoid!

Vine!
615!

125!

107!

6!14!
Marked leaves!

Tree!

Shrub!

Forb!

Graminoid!

Vine!

1073!

232!

754!

79! 72!
Annual rates of herbivory!

Tree!

Shrub!

Forb!

Graminoid!

Vine!
454!

61!
27!

6!
4!

Daily rates of herbivory!

Tree!

Shrub!

Forb!

Graminoid!

Vine!

826!

154!

653!

79!62!
Standing Leaves!

Tree!

Shrub!

Forb!

Graminoid!

Vine!
615!

125!

107!

6!14!
Marked leaves!

Tree!

Shrub!

Forb!

Graminoid!

Vine!

1073!

232!

754!

79! 72!
Annual rates of herbivory!

Tree!

Shrub!

Forb!

Graminoid!

Vine!
454!

61!
27!

6!
4!

Daily rates of herbivory!

Tree!

Shrub!

Forb!

Graminoid!

Vine!

826!

154!

653!

79!62!
Standing Leaves!

Tree!

Shrub!

Forb!

Graminoid!

Vine!
615!

125!

107!

6!14!
Marked leaves!

Tree!

Shrub!

Forb!

Graminoid!

Vine!

Annual ratesA B

C DStanding leaves Marked leaves

1073!

232!

754!

79! 72!
Annual rates of herbivory!

Tree!

Shrub!

Forb!

Graminoid!

Vine!
454!

61!
27!

6!
4!

Daily rates of herbivory!

Tree!

Shrub!

Forb!

Graminoid!

Vine!

826!

154!

653!

79!62!
Standing Leaves!

Tree!

Shrub!

Forb!

Graminoid!

Vine!
615!

125!

107!

6!14!
Marked leaves!

Tree!

Shrub!

Forb!

Graminoid!

Vine!

6
Daily rates



! 4!

Figure 4: Distribution of data entries among a simplified classification of plant duration. Charts 33!

represent the proportion of measurements falling into each plant duration category that were based 34!

on: (A) annual rates of herbivory, (B) daily rates of herbivory, (C) measurements made on 35!

standing leaves, and (D) marked leaves.  36!
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   60!

Abstract: Herbivory is viewed as a major driver of plant evolution and the most important energy 61!

pathway from plants to higher trophic levels. Therefore, understanding patterns of herbivory on 62!

plants remains a key focus in evolution and ecology. The evolutionary impacts of leaf herbivory 63!

include altering plant fitness, local adaptation, the evolution of defenses, and the diversification of 64!

plants as well as natural enemies. Leaf herbivory also impacts ecological processes such as plant 65!

productivity, community composition, and ecosystem nutrient cycling. Understanding the impact 66!

of herbivory on these ecological and evolutionary processes requires species-specific, as opposed 67!

to community level, measures of herbivory. In addition, species-specific data enables the use of 68!

modern comparative methods to account for phylogenetic non-independence. Although hundreds 69!

of studies have measured natural rates of leaf consumption, we are unaware of any accessible 70!

compilation of these data. We created such a data set to provide the raw data needed to test general 71!

hypotheses relating to plant-herbivore interactions and to test the influence of biotic and abiotic 72!

factors on herbivory rates across large spatial scales. A large repository will make this endeavor 73!
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more efficient and robust. In total, we compiled 2641 population level measures for either annual 74!

or daily rates of leaf herbivory across 1145 species of vascular plants collected from 189 studies. 75!

All damage measures represent natural occurrences of herbivory that span numerous angiosperm, 76!

gymnosperm, and fern species. To enable researchers to explore the causes of variation in 77!

herbivory and how these might interact, we added information about the study sites including: 78!

geolocation, climate classification, habitat descriptions (e.g., seashore, grassland, forest, 79!

agricultural fields), and plant trait information concerning growth form and duration (e.g., annual 80!

versus perennial). We also included extensive details of the methodology used to measure leaf 81!

damage, including seasons and months of sampling, age of leaves, and the method used to estimate 82!

percent area missing. We anticipate that these data will make it possible to test important 83!

hypotheses in the plant-herbivore literature, including the Plant Apparency Hypothesis, the 84!

Latitudinal-Herbivory Defense Hypothesis, the Resource Availability Hypothesis, and the 85!

Macroevolutionary Escalation of Defense Hypothesis. 86!

 87!

D. Key words: browsing, climatic variation, defoliation, folivory, global census, grazing, 88!

latitudinal gradients, leaf consumption, leaf age, plant-herbivore interactions, primary 89!

consumption, and trophic interactions. 90!

 91!

CLASS II. RESEARCH ORIGIN DESCRIPTORS 92!

A. Overall project description 93!

Identity: A spatially explicit compilation of leaf damage on vascular plants species by naturally 94!

occurring herbivores.  95!

Period of Study: Dates of publications of source data range from 1960-2012 96!
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Sources of funding: The compilation of this data set was supported by the Natural Sciences and 97!

Engineering Research Council of Canada and a University of Toronto Connaught Fellowship to 98!

MTJJ. 99!

 100!

B. Research Motivation 101!

The consumption of plant tissue by animals is one of the most important ecological and 102!

evolutionary interactions in nature. Herbivory is the main conduit of energy and nutrients from 103!

primary producers to consumers. The intensity of herbivory has been shown to impact plant 104!

community dynamics and composition (Fine et al. 2004, Maron and Crone 2006, Kursar et al. 105!

2009, Paine et al. 2012) as well as ecosystem level primary productivity and nutrient cycling 106!

(Cebrian and Lartigue 2004, Schmitz 2008, Chapin et al. 2011). For example, rabbit herbivory can 107!

alter the composition of plant communities through direct consumption and by altering 108!

competitive interactions among plants species (Crawley 1990). Herbivores can increase the rate of 109!

cycling of macronutrients by selecting plants and tissues of higher nutritional quality and because 110!

nutrients are often released more rapidly from their faeces than from the plants from which they 111!

are composed (Zamora et al. 1999, Schmitz 2008). Alternatively, nutrient cycling can be slowed 112!

when consumers prefer plant species with high potential decomposition rates, driving community 113!

composition towards slower decomposing species (Pastor and Cohen 1997).  114!

The 415 million years of coevolution between plants and herbivores (Labandeira 2007) is also 115!

credited with giving rise to much of the macroscopic diversity on Earth (Ehrlich and Raven 1964, 116!

Becerra et al. 2009). The evolutionary importance of this interaction stems from the fact that 117!

herbivores can strongly impact plant fitness (Marquis 1992, Bigger and Marvier 1998, Hawkes 118!

and Sullivan 2001) and can therefore be an important driver of the diversification of plant defenses 119!
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(Becerra et al. 2009, Kursar et al. 2009, Agrawal et al. 2012, Prasad et al. 2012). Similarly, plant 120!

speciation and the diversification of defenses can lead to the diversification of herbivores as they 121!

evolve counter-adaptations to overcome these defenses (Ehrlich and Raven 1964, Dyer et al. 2007, 122!

Wheat et al. 2007, McKenna et al. 2009, Dobler et al. 2012, Zhen et al. 2012). Although herbivory 123!

has been studied for decades, many unanswered questions remain, including a firm understanding 124!

of the factors that impact its intensity and how these factors interact.  125!

A repository of standardized and comparable estimates of leaf consumption across species in 126!

different ecosystems provides a valuable resource that can help address many research questions. 127!

Most vascular plants produce leaves, and estimates of leaf herbivory can be obtained easily and 128!

quickly without expensive equipment. This means that not only can a large data set be compiled 129!

from existing data, but it can also be easily expanded in the future. Damage sustained to non-130!

photosynthetic tissues is also important for ecology and evolution of plants and their herbivores 131!

but quantifying its intensity is more challenging and difficult to standardize. For example, 132!

quantifying root herbivory requires extensive and careful excavation as well as time-consuming 133!

observations (Johnson and Murray 2008). Even with such careful work, it is difficult to accurately 134!

quantify herbivory to fine roots, which make up a large percentage of root biomass and is 135!

considered the most active root tissue in resource acquisition (Johnson and Murray 2008). 136!

Similarly, measuring the consumption of reproductive tissues can be limited by its short temporal 137!

availability, which makes comparisons among taxa more difficult. Damage caused by piercing-138!

sucking herbivores might only be properly quantified using manipulative experiments (Zvereva et 139!

al. 2010). Furthermore, herbivory from piercing-sucking insects is usually measured as reduced 140!

biomass, but it is difficult to separate the direct effects of the phloem and xylem lost to piercing-141!

sucking herbivores versus the negative effects of pathogens that are frequently transmitted to the 142!
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plants (Miles 1989). These challenges help to explain why leaf damage is the most pervasive 143!

measure of herbivory in the literature (Johnson and Murray 2008, Schowalter 2011), and why a 144!

comprehensive and standardized data set of leaf herbivory has added value for ecological and 145!

evolutionary research. 146!

Rates of herbivory are influenced by multiple biotic and abiotic factors, including plant 147!

functional traits that determine how it interacts with its associated herbivore community (Loranger 148!

et al. 2012, Schuldt et al. 2012). Quantifying the relative importance of these factors and how they 149!

interact requires a large number of measurements under a variety of conditions in different 150!

localities. Species-specific data enables researchers to understand how these factors influence 151!

species differently as opposed to community level herbivory measurements. Moreover, species-152!

specific data enables the use of modern phylogenetic statistical tools to conduct large-scale 153!

comparative analyses that account for phylogenetic non-independence. For example, such analyses 154!

permit researchers to tease apart the importance of ecological variation compared to evolutionary 155!

history in driving rates of herbivory across sites (Fine et al. 2006, Pearse and Hipp 2012). Also, by 156!

listing methodological details, the data set could help identify and correct for certain biases that 157!

may arise when quantifying herbivory. Finally, the data set will help identify limitations of 158!

published data, such as the rarity of studies measuring herbivory in certain locations, on plants 159!

with certain traits (Figs. 1-4), or the rarity of measurements in certain clades (e.g., Orchidaceae). 160!

  161!

C. General Methodology 162!

We identified and collated estimates of leaf herbivory from a phylogenetically diverse array of 163!

vascular plants using a large literature search (for details see Data Acquisition section below) in 164!

addition to providing our own data. From each study we collected detailed information on the 165!

study sites, the methodologies employed to measure herbivory, and entered additional plant trait 166!
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information. Finally, we classified whether these measures corresponded to annual or daily rates of 167!

percent leaf herbivory. 168!

 169!

 170!

1) Selection criteria and data acquisition 171!

We first summarize the criteria for inclusion in the data set as well as how we obtained data and 172!

supplemental information concerning study sites and plant species. We included data that 173!

pertained to damage caused by naturally occurring herbivores and excluded studies or treatments 174!

that experimentally altered the density of herbivores. A few experimental studies were included 175!

that used fences to exclude large grazing herbivores; we note this information in the ‘Population 176!

Information’ column.  177!

We selected studies that report percent leaf area consumed, including chewing, grazing, and 178!

mining damage, but we excluded leaf damage caused by necrosis, galling, phloem and xylem 179!

feeding. We excluded studies that did not report plant species-specific rates of damage. We 180!

extracted herbivory estimates and error values from tables or figures. We used Web Plot Digitizer 181!

(http://arohatgi.info/WebPlotDigitizer/) to extract data that were only available in graphical 182!

format. In all cases our estimates represent the mean or median percent leaf damage from multiple 183!

replicate plants. We noted when authors mentioned the most common consumers and categorized 184!

them into their major taxonomic groups. We then identified plant growth form and duration using 185!

the source literature and from online trait data sets (e.g., www.plants.usda.gov). We identified the 186!

family and order of species using currently accepted taxonomy (www.plants.usda.gov; The 187!

angiosperm phylogeny group 2009, Lehtonen 2011). Finally, we identified the locality of each 188!

sampling site using GPS coordinates reported by authors of each study, or by estimating them 189!

ourselves using online tools (e.g., Google Earth). We then used ArcMap 10.1 (www.esri.com) to 190!
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associate each site with a Köppen-Geiger hierarchal climate classification as delimited by Peel et 191!

al. (2007).  192!

 193!

 194!

2) Assessment of leaf damage 195!

The methods used to quantify leaf herbivory included a ‘standing’ measure and a ‘marked’ leaf 196!

method that each has their own advantages and limitations (Coley 1982, Lowman 1984, Landsberg 197!

1989, Coley and Barone 1996). The standing measure consists of measuring the damage on leaves 198!

present on a plant at a single point in time. The ‘marked’ leaf method consists of quantifying 199!

damage and marking leaves, using felt pens or attaching colored rings, on one day and then 200!

returning after a number of weeks to quantify the change in leaf damage. Because standing 201!

measures are relatively rapid and easy to use, they remain the most commonly employed method 202!

and are often the only method used for certain clades (e.g. gymnosperms). However, standing 203!

measures can underestimate damage (Lowman 1984, Filip et al. 1995) if one does not look for 204!

evidence of completely consumed leaves (Lowman 1985, Massey et al. 2006, Brenes-Arguedas et 205!

al. 2009). Conversely, the marking approach is more accurate and can also provide daily rates of 206!

damage. The marking approach suffers from being more time consuming and it can potentially 207!

overestimate damage if one assumes that all missing leaves were entirely consumed, as opposed to 208!

being dropped following incomplete damage, or if the marks themselves influence herbivory rates 209!

(Landsberg 1989, Cahill Jr et al. 2001, Hik et al. 2003, Shaw et al. 2006).  210!

 211!

3) Daily and annual rates of herbivory 212!

We accumulated both daily and annual rates of herbivory because both types of estimates are 213!

commonly provided in the literature and each has unique advantages. Some researchers have 214!
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advocated the use of daily rates of herbivory because this measure can account for wide variation 215!

in leaf lifespan and production (Coley 1982, Brown and Ewel 1987, Lamarre et al. 2012). Daily 216!

rates require the marking approach with a known length of marking and thus cannot be applied to 217!

standing measures. Nevertheless, standing measures can still be informative given that they can 218!

represent annual rates of herbivory. Annual rates are useful because they represent the total 219!

fraction of leaf production lost to herbivores each year. We included annual values if 220!

measurements, either standing or marked, summarized most of the damage a leaf endures in its 221!

lifetime. Although some species retain leaves for more than one year, most of the damage occurs 222!

within their first year of growth (Coley and Barone 1996). Specifically, in deciduous species we 223!

included estimates that were taken near the end of the growing season.  224!

Specifically, we included data that quantified accumulated damage present on mature leaves 225!

since these should have experienced most of their lifetime damage. In addition, we included data 226!

of marked expanding leaves that summed damage of individual leaves over more than one month. 227!

Although leaf expansion might be completed in less than one month, in most tropical and 228!

temperate systems this period is too short to capture most of the lifetime herbivory a leaf 229!

experiences (Coley and Barone 1996). This approach assumes that damage incurred over the 230!

lifetime of a single leaf is representative of the damage received by leaves that are produced at 231!

other times during the same year. We provide details of the method of sampling, its length, 232!

seasons sampled, and months of sampling so that researchers can set their own criteria for data 233!

inclusion. 234!

 235!

D. Data Limitations and Potential Enhancements 236!

Here we discuss limitations in the existing data set and propose future directions of 237!

research that could greatly enhance our understanding of plant-herbivore interactions across the 238!
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globe. We recognize that comparing herbivory across systems is a difficult task and these 239!

challenges have been discussed extensively by previous authors (Coley 1982, Lowman 1984, 240!

Landsberg 1989, Coley and Barone 1996). Nevertheless, there are several common deficiencies 241!

with the most commonly employed methods used to measure herbivory that limit the quality of the 242!

data. For example, leaf lifespan and the number of flushes per year can complicate measures of 243!

herbivory. Although marking leaves and tracking damage through time improves our ability to 244!

accurately quantify damage, ideally the rate of leaf production should also be accounted for. 245!

Lamarre et al. (2012) demonstrated an approach that quantifies the consequences of herbivory as 246!

an opportunity cost for the plant, by accounting for both the amount of biomass removed by 247!

herbivores and the rate at which this biomass can be replaced. In addition, marking studies should 248!

not assume that the majority of damage occurs during leaf expansion, as this is only supported for 249!

shade tolerant species in wet tropical forests (Coley and Barone 1996). Ideally, marking studies 250!

should last for an entire year, or more appropriately for the lifespan of a leaf, but this is 251!

often impractical.  252!

We urge future researchers to provide additional methodological details when reporting 253!

herbivory measures. Many studies, using either the marking or standing methods, do not report 254!

how frequently they observe completely missing leaves or how these observations are treated. 255!

Moreover, authors should report the developmental stage of the plants which can greatly impact 256!

herbivory rates (Boege and Marquis 2005), as well as the composition of the surrounding plant 257!

community (Massey et al. 2006, Loranger et al. 2013). Finally, a proportion of studies fail to 258!

report confidence or error estimates for mean herbivore rates. Although less common in modern 259!

studies, this problem still occurs in some recently published data. The lack of confidence estimates 260!
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limits the usefulness of these entries for explicit meta-analyses. A related issue is the omission or 261!

lack of clarity in the number of replicate plants and leaves measured per plant. 262!

Our compilations revealed striking patterns in the application of measurement methods 263!

across different ecosystems or among plant life forms. Figures 1-4 reveal that the daily rate 264!

measures, and hence studies that apply the marking technique, are almost exclusively performed 265!

on tropical perennial trees.  We also show a lack of data from large areas of the globe including 266!

Africa, Asia, and Polynesia (Fig.1), and a heavy focus on data from a few well-studied locations 267!

(e.g., Barro Colorado Island in Panama and Northeastern United States). This unbalanced 268!

sampling could bias our understanding of general patterns of herbivory. We encourage researchers 269!

to add data using multiple techniques, from plants with a variety of life forms and from poorly 270!

represented areas. These data would enable new tests of important ecological and evolutionary 271!

questions across all major areas of the globe. 272!

Perhaps the largest limitations of the data set pertain to gaps in data that relate to different 273!

plant tissues and the underrepresentation of particular plant lineages. Our data set focuses on leaf 274!

consumption whereas it should ideally be extended to include the removal of non-photosynthetic 275!

tissues such as roots, fruits, flowers, and xylem and phloem sap, as well as other types of damage 276!

to leaves including necrotic and galling damage. Regrettably, these data are scarce. With the 277!

addition of these data one could test the relative extent of damage to different tissues, which 278!

remains rarely untested (Rasmann and Agrawal 2008). These data would also allow for a test of 279!

how biotic and abiotic factors differently impact herbivory on different tissues. We see equally 280!

large gaps in taxonomic coverage of sampling. Although the data set covers 166 families of 281!

vascular plants, major lineages are still missing or under-represented, such as clubmosses 282!

(Lycopodiopsida), horsetails (Equisetum), and orchids (Orchidaceae). Aquatic plants are also 283!
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sparsely represented in the data set. Adding missing clades could help better quantify 284!

macroevolutionary patterns of herbivory and defense (Coley et al. 1985, Fine et al. 2004, Fine et 285!

al. 2006, Agrawal 2007, Futuyma and Agrawal 2009). The addition of more domesticated plants 286!

(both horticultural and agricultural) could also provide a more robust quantitative test comparing 287!

rates of herbivory in an applied context.  288!

 289!

CLASS III. DATA SET STATUS AND ACCESSIBILITY 290!

A. Status 291!

Latest update: August 2013 292!

Latest Archive date: August 2013 293!

Data verification: Data is mostly from published sources. We searched for extreme values and 294!

corrected any transcription errors.    295!

B. Accessibility 296!

Contact person: Martin M. Turcotte, Department of Biology, University of Toronto at 297!

Mississauga, Mississauga, Ontario, L5L 1C6, Canada mart.turcotte@gmail.com 298!

Copyright restrictions: None.  299!

Proprietary restrictions: Please cite this data paper when the data are used in publications. We 300!

also request that researchers and teachers inform us how they are using the data. 301!

Costs: None. 302!

 303!

 304!

CLASS IV. DATA STRUCTURAL DESCRIPTORS 305!

COMMUNITY DATA 306!
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A. Data Set File 307!

Identity: Leaf_Herbivory.csv 308!

Size: 2641 records, 1,332,259 Bytes 309!

Format and storage mode: comma-separated values (.csv) 310!

Header information: See column descriptions in section B.  311!

Alphanumeric attributes: Mixed. 312!

Data Anomalies: If no information is available for a given record, this is indicated by 'NA'. 313!

 314!

B. Variable information 315!

1) Plant Species Information  316!

Variable Variable Definition Type / Units Variable Values 

Record ID 
Number 

Data set record entry, sorted by 
taxonomy. Integers 00001 ! 02641 

Order Order name  Characters Various 

Family Family name  Characters Various 

Species Scientific species name (Genus 
species) Characters Various  

Selection 
history 

Whether the species is a wild or a 
crop species Characters Crop; Wild 
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Plant growth 
form 

Plant growth form, some sources 
also explicitly state if the plant is 

woody 
Characters 

Forb/herb; 
Graminoid; 

Liana; 
Shrub; 

Subshrub; 
Tree; Vine; Woody 
liana; Woody vine 

Duration Lifespan of plant (life-history) Characters Annual; Biennial; 
Perennial 

 317!

2) Study Site Information  318!

Variable Variable Definition Type / Units Variable Values 

Study Code 
Study code to identify the data 

source. See the ‘Literature cited in 
Data set’ for citation.     

Characters Variable 

Country Site is located in what country Characters Country name 

Location General location of site Characters Various 
descriptions 

Latitude Latitude of site 
Degrees, minutes, 

seconds, 
(DDdMM’SS”N) 

Various 

Longitude Longitude of site 
Degrees, minutes, 

seconds, 
(DDdMM’SS”W) 

Various 

Coordinates 
notes 

Notes describing how coordinate 
data were obtained Characters Various 

KG climate 
simple 

Highest tier of Köppen-Geiger 
climate classification (Peel et al. 

2007)  
Characters Various 

KG climate 
full 

Full Köppen-Geiger climate 
classification (Peel et al. 2007) Characters Various 
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Habitat 
description 

Simple habitat description 
provided by the authors Characters Various 

Population 
information 

Information used by sources to 
distinguish sites or samples, can 

represent locations, plant ages, or 
treatments 

Characters Various 

Population 
origin 

Whether the studied plants were 
growing naturally or planted Characters Natural; Planted 

 319!

3) Sampling Methods  320!

Variable Variable Definition Type / Units Variable Values 

Year Year of sampling (can be a range 
of values) Integers 1964 to 2012 

Season Season during sampling Characters 

All seasons; Dry; 
Fall; Growing; 

Spring; Summer; 
Wet; Winter 

Month Month of sampling Characters Specific months, or 
‘all year’ 

Standing or 
marked leaves 

Whether the method for 
measurement was made on 

standing stock or marked leaves 
Characters Standing; 

Marked 

Leaf age Age of leaves measured Characters 

Expanding; Mature; 
mix = both 

expanding and 
mature leaves 

included; Lifespan = 
marked leaves from 
early expansion well 

into maturity 

Area 
measurement 

method 

Method used to estimate percent 
leaf damage Characters 

Automatic = 
automated 

measurement (e.g. 
scanning); 

Planimeter = manual 
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tool; Grid = visual 
aide; 

Photocopy = 
weighing photocopy 

cutouts; 
Visual 

Sampling 
details 

Details on the method of 
sampling, can include the age of 
the plant, number of leaves, how 

plants or leaves were selected, and 
how long marking lasted 

Characters Various 

Length of 
marking 

(days) 

Number of days between marking 
and herbivory measurement Integer (days) Various 

 321!

4) Herbivory Data  322!

Variable Variable Definition Type / Units Variable Values 

Data source 

Location of data within the 
manuscript (e.g., table, figure, 

text) and modifications of values 
(such as conversions) and whether 
herbivory values are medians or 

mean 

Characters Various 

Annual 
herbivory 
rate (%) 

Estimate of annual leaf herbivory 
(% area consumed), most studies 

report mean values unless noted in 
the ‘Data Source’ column 

Numeric (% 
leaf area 
damage) 

Various  

Annual error 
estimate 

Unit of error if reported for annual 
herbivory rate Characters 

CV = coefficient of 
variation; 

SD = standard 
deviation; SE = 
standard error;  

C.I. = 95% 
confidence interval;  

range 
Annual error 

value 
Value of error estimate if 

available Numeric Various 

Number of 
replicates 

Number of plants measured, some 
descriptions were unclear and had 

to be estimated 
Integers Various 
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Daily 
herbivory 
rate (%) 

Estimate of daily leaf herbivory 
(% area consumed per day), most 
studies report mean values unless 
noted in the ‘Data Source’ column 

Numeric (% 
leaf area 

damage per 
day) 

Various  

Daily error 
estimate 

Unit of error for daily herbivory 
rate Characters 

CV = coefficient of 
variation; 

SD = standard 
deviation; SE = 
standard error; 

 
Daily error 

value Value of error estimate Numeric Various 

Consumers 

Most common herbivores 
mentioned by the authors, in most 
cases this a qualitative statement 
and not quantified explicitly and 

refers to the entire study 

Characters 

Arachnida; 
Crustacea; 

Gastropoda;  
Pathogens; 
Vertebrata;  

 
Within Insecta: 

Coleoptera; Diptera; 
Hemiptera; 
Homoptera; 

Hymenoptera; 
Lepidoptera;   

Miscellaneous;  
Orthoptera 

 323!

 324!

CLASS V. SUPPLEMENTAL DESCRIPTORS 325!

A. Data acquisition 326!

1. Data forms or acquisition methods 327!

We initiated the data set with a large literature search on October 28th 2011. Using SciVerse 328!

Scopus (www.scopus.com) we searched titles, abstracts, and keywords using the following series 329!

of related combinations of terms for herbivory:  330!

TITLE-ABS-KEY("rate* of grazing" OR "grazing rate" OR "amount of grazing" OR "level* of 331!

grazing" OR "grazing level*" OR "rate* of herbivor*" OR "herbivor* rate" OR "amount of 332!

herbivor*" OR "herbivory level*" OR "level* of herbivory" OR "degree of herbivor*" OR 333!
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"rate* of defoliat*" OR "defoliat* rate" OR "amount of defoliat*" OR "defoliation level*" OR 334!

"level* of defoliation" OR "foli* damage*" OR "foli* level*" OR "level* of foli*" OR "leaf 335!

min* damag*" OR "leaf area remov*" OR "leaf damage" OR "damage to lea*" OR "percent 336!

leaf area" OR "leaf area damage" OR "removal of leaf" OR "leaf consumption" OR 337!

"consumption of leaves" OR "leaf herbivor*" OR "canopy consumption" OR "consumption of 338!

canopy" OR "canopy damag*" OR "canopy defoliation" OR "foliage damag*" OR "foliage 339!

consum*" OR "consumption of foliage" AND NOT *plankton* AND NOT alga*) AND 340!

DOCTYPE(ar OR ip OR cp OR le OR no OR sh) 341!

 * Indicates words with all possible ending will be identified 342!

Of the 3371 studies identified we examined studies published from the 50 most frequent 343!

journals (Table 1). We then added studies identified in other review papers. We also performed 344!

supplementary searches for underrepresented lineages such as ferns, and added some of our own 345!

unpublished data. In total approximately 1450 studies were evaluated for inclusion into the data 346!

set.  347!

 348!

  349!
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Table 1: The fifty most frequent journals identified with the literature search.  350!

Acta Horticulturae Global Change Biology 
Acta Oecologica HortScience 
Agricultural and Forest Entomology Hydrobiologia 
Agriculture, Ecosystems and 
Environment Journal of Applied Ecology 

Agronomy Journal Journal of Chemical Ecology 
American Journal of Botany Journal of Ecology 
Annals of Botany Journal of Economic Entomology 
Aquatic Microbial Ecology Journal of Experimental Botany 

Austral Ecology Journal of Experimental Marine 
Biology and Ecology 

Biological Conservation Journal of Plant Nutrition 
Biological Control Journal of Range Management 
Biological Invasions Journal of Tropical Ecology 
Biotropica Marine Biology 
Canadian Journal of Forest Research Marine Ecology Progress Series 
Crop Protection New Phytologist 
Crop Science Oecologia 
Ecological Applications Oikos 
Ecological Entomology Plant and Soil 
Ecological Research Plant Disease 
Ecology Plant Ecology 
Entomologia Experimentalis et Applicata Plant, Cell and Environment 
Environmental Entomology Planta 
Environmental Pollution Scientia Horticulturae 
Forest Ecology and Management Tree Physiology 
Functional Ecology Water, Air, and Soil Pollution 

 351!

3. Data entry/verification procedures 352!

F. Publications and Results 353!

G. History of data set usage 354!
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 Turcotte et al. (In review) used the annual herbivory measurements to calculate species 355!

level mean herbivory rates. They used these values to conduct a phylogenetically explicit analysis 356!

exploring the macroecological and macroevolutionary patterns of herbivory within and among 357!

major plant lineages.  358!

1. Data request history: None 359!

2. Data set update history: None 360!

  361!
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